

ELGIN O'HARE WEST BYPASS

communities. opportunities. solutions.

Elgin O'Hare – West Bypass ElS PM_{2.5} Hot Spot Analysis

Presented to CMAP CH2M HILL 3/13/2012

Elgin O'Hare – West Bypass Project

- Identified as project of regional and national significance
- Tiered EIS process
- Governor's Advisory Council
 - Collaborative group advised Governor on <u>financing</u>, <u>sustainability</u>, <u>diversity</u>, and <u>economic benefits</u> of EO-WB in Final Report June 2011
- Illinois Tollway identified EO-WB in capital improvement (Move Illinois)
 - Dedicated funding
 - Construction to begin 2013 and extend through 2025

Sustainability

- Green Power
- Water Quality
- Construction Incentives

Economic

- 41,000 longterm jobs
- \$6 B added to regional economy

Diversity

 Create program to develop, assist & monitor

Financing

- Finance and operate as a Tollway
- Phase Implementation

Tier Two Build Alternative

Purpose of Analysis

- Project of air quality concern
 - Annual PM_{2.5} nonattainment
 - Highway project with significant number of diesel vehicles
 - Hot Spot Analysis is required to demonstrate projectlevel conformity
- Starting in December 2012, quantitative analysis required for PM hot spot analysis
- Until December 2012, quantitative or qualitative analysis is acceptable
- Interagency workgroup decided this project is a good candidate for a quantitative analysis

Original Submitted Analysis – Methodology

- Entire project should be modeled, but large projects can analyze locations within project area expected to have highest pollutant concentrations
 - Elgin O'Hare and West Bypass corridors
 - Elgin O'Hare corridor and I-290
 - Elgin O'Hare corridor and Roselle Road
 - West Bypass corridor and I-90
- Must analyze years of peak emissions within transportation plan
 - 2040: last year of regional transportation plan
 - 2030: peak capacity after completion of initial construction phase

Original Submitted Analysis – Methodology (continued)

Emissions estimated using MOVES

- Local fuel, vehicle mix, registration mix from MOBILE6 files provided by IEPA
- Average speed by functional class

Concentrations estimated using CAL3QHCR

- Project represented as a series of line sources
- Main source inputs are volumes from traffic forecasting and emissions from MOVES
- 5 years of local meteorological data

Example Model Setup

Original Submitted Analysis - Results

Annual $PM_{2.5}$ Concentrations ($\mu g/m^3$)

Location	2040 No-Build	2040 Build	2030 Interim Year Build
Elgin-O'Hare Expressway & West Bypass	13.2	14.0	14.3
Elgin-O'Hare Expressway & I- 290	13.8	13.5	N/A
Elgin-O'Hare Expressway & Roselle Road	13.4	13.4	N/A
West Bypass & I-90	13.8	13.6	N/A

- All results include background concentration of 13 µg/m³
- Results shown are for the maximum modeled receptor
- 2030 results are based on a combination of 2030 emission factors and 2040 vehicle volumes

FHWA Comments – Interim Year

- Clarify why the year 2030 was selected for analysis
 - 2030 represents year of peak emissions after completion of initial construction phase
- All years must undergo the same level of analysis
 - Use traffic forecasting data from 2030 and emission factors from 2030
 - Model all 4 interchanges for 2030
 - 2030 Modeling revised

FHWA Comments – Meteorological Data

- Was Peoria upper air station the appropriate upper air data for this project site?
 - Yes. IEPA advised latitude is more critical than proximity to water.
- Was 1986-1990 meteorological data recent enough for this analysis?
 - Yes. Readily available for public use.
 - Meets EPA criteria: 5 consecutive years of mostrecent readily available data

FHWA Comments – Hourly Vehicle Volume

- Text suggested that hourly vehicle volumes were derived from average daily vehicle volumes
- Hourly vehicle volumes were provided by traffic analysts for AM peak, PM peak, midday and off-peak
- Modeling analysis was not changed
 - Text updated
 - Hourly volume data provided for review

FHWA Comments – Average Vehicle Speed

- Was the use of aggregate average vehicle speeds appropriate for this analysis?
 - Yes. Small variability variation throughout project area, and small directional variability
 - Modeling analysis was not changed
 - Example of 2040 Build aggregate speeds:

Average Speeds by Functional Class in Miles per Hour

	Functional				
Scenario	Class	AM Peak	PM Peak	Mid-Day	Off-Peak
2040 Build	Freeway	33	41	44	52
	Principal				
	Arterial	37	37	42	46
	Minor				
	Arterial	27	27	32	42
	Collector	27	29	33	37

FHWA Comments – Justification of Other Assumptions

- FHWA requested justification of model input assumptions
 - Examples: describe how segments were determined, clarify if signalized intersections were included, justify use of 0% grade in MOVES and flat terrain in CAL3QHCR
- Modeling analysis was not changed
- Text was revised to include more details

Revised Analysis Results

- 2040 analysis not revised
- 2030 Build analysis given same level of evaluation as 2040 Build analysis

Annual $PM_{2.5}$ Concentrations ($\mu g/m^3$)

Location	2040 No-Build	2040 Build	2030 Interim Year Build
Elgin-O'Hare Expressway & West Bypass	13.2	14.0	13.8
Elgin-O'Hare Expressway & 1-290	13.8	13.5	13.6
Elgin-O'Hare Expressway & Roselle Road	13.4	13.4	13.4
West Bypass & I-90	13.8	13.6	13.8

Conclusion of Quantitative PM2.5 Hot Spot Analysis

- Project-level conformity is demonstrated
 - Project does not cause or contribute to a violation of the annual PM_{2.5} NAAQS

Challenges of Analysis

New Guidance

- Domain not well-defined
- Example projects much simpler than this project
- Limited guidance about background concentration

New Model

- MOVES is powerful, but not all features are appropriate for this level of analysis
- Current design is cumbersome for project-level purposes
- Generates many files that must be submitted for review

Using an old model in a new way

- CAL3QHCR input limitations
- Meteorological processor no longer supported by EPA

Lessons Learned

- Detailed documentation is critical
- Get agreement on assumptions early
- Go to trainings and stay up to date on developments
- Don't underestimate the effort it takes to run new models

ELGIN O'HARE WEST BYPASS

communities. opportunities. solutions.

Questions?

